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The time-dependent bending of single-phase and two-phase bimetal strips due to interdiffusion is
computed. The model couples simple beam theory and diffusion with bending due to the creation
and/or annihilation of vacancies necessitated by unequal lattice diffusion rates of the two metals.
The single-phase analysis employs a Fourier method for the diffusion analysis and predicts a
beam curvature that is initially proportional to time and later reaches a constant value. The two-
phase analysis, which involves a moving interphase boundary, employs an error function solu-
tion for the diffusion problem to model early times and a numerical solution for later time.
Unlike the single-phase results, linear behavior is obtained at early time only if the original
interface is centered in the beam. In general, the curvature initially is proportional to the square
root of time. The numerical solution gives the gradual transition of the curvature to a constant
value at late time. In some cases, nonmonotonic time dependence is obtained for the curvature
for the two-phase beam.
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1. Introduction

The Kirkendall effect due to unequal diffusion rates of
atomic species is well known to cause the formation of voids.
The voids form in response to the condensation of excess
vacancies when insufficient vacancy sinks (grain boundaries
and climbing dislocations) are available. With sufficient
vacancy sources and sinks, lattices sites are destroyed and
different parts of the lattice are displaced with respect to each
other (Kirkendall shift). Less well known is the bending of
thin samples subject to transverse diffusion due to the
Kirkendall effect.

Experiments and models elucidating bending have been
executed for solid solution alloys of Au–Ag by Stevens and
Powell,[1] of Cu-Ni by Daruka et al.,[2] and of Zr-Ti by
Opposis et al.[3] Suo et al.[4] describes a practical application
of this subject where the stresses and bending due to the
difference of diffusion rates of oxygen and metals in thermal
barrier coatings have been investigated. A beam that
undergoes transverse diffusion may also bend if the lattice
parameter (or alternately, the molar volume) depends on
mole fraction even if the intrinsic diffusion coefficients are
equal. The rigorous basis for these effects was described by
Stephenson,[5] who also described the transition between the
limiting cases of the ‘‘Darken’’ and ‘‘Nernst-Plank’’ limits

of coupled diffusion and deformation as various parameters
vary according to the material of interest.

Daruka et al.[2] performed numerical, analytical, and
experimental investigations of the bending of single-phase
plates undergoing diffusion with unequal diffusion rates for
two species. Their experiments clamped an entire edge of a
plate and thus their analysis focused on the cylindrical
geometry and required an analysis of the clamping moment.
An analytical result from their work relates the curvature of
the cylindrical plate,j, to time as

jðtÞ ¼ 6
�DB � �DA½ �

d3
t; ðEq 1Þ

where d is the beam thickness and the �Di are concentration-
weighted average intrinsic diffusion coefficients.* This
expression was derived from their general model for times
when the diffusion distance is much less than the beam
thickness and in the limit of high creep rate when the
viscosity g of their Maxwell solid tends to zero. In their
general model, which is numerically evaluated, they allow
for a dependence of diffusion flux not only on gradients of
concentration but also on gradients of pressure. This
coupling allows them, like Stephenson,[5] to recover Darken
and Nernst-Plank limits of diffusion/viscous flow behavior.

A simpler model is presented herein because the direct
effect of pressure gradient on diffusion flux is neglected. We
build upon previous work[6] that described the bulging of
diffusion couples in a direction transverse to the diffusion
direction due to the Kirkendall effect. In that work, the
pressure gradient effect was neglected and thus the diffusion
and stress analysis were decoupled. Good agreement with

*Daruka et al.[2] define average intrinsic diffusion coefficients by

Vm

R cþ12
c�12

Didc2; where Vm is the average molar volume, Di is the intrinsic

diffusion coefficient of component i and c2 is the molar concentration of
component 2. The integral is taken over the range of concentrations of the
couple.
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experiments was obtained. We extend this simpler approach
to diffusion in a single-phase bi-metal strip and in a two-
phase bi-metal strip with a moving interface. For the single-
phase strip, we arrive at a similar expression as Eq 1 but
with a different numerical factor and also obtain a solution
using Fourier methods that treats the transition from linear
behavior to a final steady state that is important for thin
layers. For the two-phase beam, we apply an error function
solution to learn that the early time behavior need not be
linear. A numerical solution is used to obtain the approach
to steady-state behavior.

2. Models

2.1 Single-Phase Beam: General Model

We consider a model that employs a constant molar
volume Vm in the sample and consider diffusion in the thin
z-direction across a bimetal strip of thickness d (see Fig. 1).
The mole fraction, XBðz; tÞ has initial conditions

XBðz; 0Þ ¼
X Bottom
B for 0< z< z0

X Top
B for z0 < z< d

�

ðEq 2Þ

and satisfies

@XB

@t
¼ eD@

2XB

@z2
; ðEq 3Þ

with the boundary conditions @XB=@z ¼ 0 at z ¼ 0 and
z ¼ d where ~D is the interdiffusion coefficient that is
assumed constant.

The total strain rate _eTij is decomposed into the sum of
stress-free, elastic, and plastic parts. The stress-free strain
rate _e0ij is related to the molar volume and the vacancy
creation rate rv, which is equal to the divergence of the
vacancy flux Jv. The divergence of the flux is related to the
difference between the intrinsic diffusion coefficients DA

and DB and the Laplacian of the mole fraction of component
B according to

_e0ij ¼
1

3
dijVMrv ¼

1

3
dijVMr � Jv ¼

1

3
dij½DB � DA�r2XB;

ðEq 4Þ

where ½DB � DA� has been assumed constant. The stress-
free strain is equal to the total strain only if there is no
applied stress and/or geometrical constraint of the sample.

A simple model uses a plastic strain rate proportional to
the deviatoric stress by the relationship

_ePij ¼
1

2g
rij �

1

3
dijrkk

� �

; ðEq 5Þ

where g is the viscosity. The elastic strain for an isotropic
solid is

eEij ¼
ð1þ mÞ

E
rij �

m
E
rkkdij ðEq 6Þ

where E is Young’s modulus and m is Poisson’s ratio.
We apply simple beam theory for a spherically bent plate

(beam). Only in-plane stresses are considered with
rxx ¼ ryy ¼ r. Then

_ePxx ¼ _ePyy ¼
r
3g

ðEq 7Þ

and

eExx ¼ eEyy ¼
rð1� mÞ

E
¼ r

2E
ðEq 8Þ

where the last equality is due to our assuming that the solid
is incompressible* (m ¼ 1=2).

The total in-plane strain components for a beam with
mean curvature jðtÞ are

eTxxðz; tÞ ¼ eTyyðz; tÞ ¼ �jðtÞ½z� cðtÞ�; ðEq 9Þ

where cðtÞ is the z-position of the neutral strain axis.**
The beam curvature is taken as positive when the beam is
concave when viewed from positive z. From Eq 4, the
in-plane components of the stress-free strain due to the
diffusion are

_e0xx ¼ _e0yy ¼
DD
3

@2XB

@z2
; ðEq 10Þ

where DD ¼ DB � DA. Following only the xx component
and using Eq 7–10, the strain rate can be written in the form

d

dt
f�jðtÞ½z� cðtÞ�g ¼ 1

2E

@rðz; tÞ
@t

þ 1

3g
rðz; tÞ

þ DD

3eD

@XBðz; tÞ
@t

: ðEq 11Þ

We next impose the balance of forces and moments
standard in simple beam theory,

Fig. 1 The geometry of the bimetal strip. Positive curvature is
defined as concave up

*A crucial simplification in this work is that we have assumed that the
partial molar volumes of components A, B, and vacancies are identical and
constant; specifically, the partial molar volumes are independent of stress,
as reflected in our choice of m ¼ 1=2. With the assumption of equal partial
molar volumes, the atomic fluxes are independent of stress. Moreover, in
writing Eq 3 we have omitted nonlinear terms that would couple the con-
centration gradient to the deformation field. These assumptions give rise to
a Kirkendall effect, which results only from the difference of intrinsic
diffusivities, and leads to a more tractable model analytically.
**When stress-free strain is present, the neutral stress and strain axes are
not the same.
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Zd

0

rðz; tÞdz ¼ 0 ;

Zd

0

zrðz; tÞdz ¼ 0 ; ðEq 12Þ

together with the vanishing of the time derivatives of these
expressions. Integrating Eq 11 over z, then gives

d

dt

Zd

0

jðtÞ½z� cðtÞ�dz ¼ �DD

3eD

d

dt

Zd

0

XBðz; tÞdz; ðEq 13Þ

and integrating z times Eq 11 with respect to z gives

d

dt

Zd

0

zjðtÞ½z� cðtÞ�dz ¼ �DD

3eD

d

dt

Zd

0

zXBðz; tÞdz; ðEq 14Þ

where we have pulled the time derivatives through integrals
freely since the limits are independent of time. These
expressions can then be integrated in time to produce the
two relations

jðtÞ
Zd

0

½z� cðtÞ�dz ¼ �DD

3eD

Zd

0

½XBðz; tÞ � XBðz; 0Þ�dz;

ðEq 15Þ

jðtÞ
Zd

0

z½z� cðtÞ�dz ¼ �DD

3eD

Zd

0

z ½XBðz; tÞ � XBðz; 0Þ�dz:

ðEq 16Þ

Here we have identified the constants of integration in
terms of the initial data XBðz; 0Þ, and have assumed that the
plate is initially straight, jð0Þ ¼ 0, and stress-free. Conser-
vation of solute implies that the right hand side of Eq 15
vanishes. This equation then reduces to

jðtÞ d2

2
� cðtÞd

� �

¼ 0; ðEq 17Þ

and we find cðtÞ ¼ d=2 is at the mid-plane of the beam.
Equation 16 then reduces to

jðtÞ d3

3
� cðtÞd

2

2

� �

¼ d3

12
jðtÞ

¼ � DD

3eD

Zd

0

z ½XBðz; tÞ � XBðz; 0Þ�dz:

ðEq 18Þ

We have

Zd

0

zXBðz; 0Þdz ¼ X Bottom
B

z20
2
þ X Top

B

d2

2
� z20

2

� �

; ðEq 19Þ

and we are left to compute

Zd

0

zXBðz; tÞdz: ðEq 20Þ

We note that the mechanical materials parameters, E and
g, have dropped out of the expression for the time
dependence of the curvature of the beam. As in our other
work,[6] the stress will, however, depend on the mechanical
properties.

2.2 Single-Phase Beam: Solution by Fourier Series

Rather than employ standard error function solutions to
the diffusion equation that would only be valid for early
times, we employ solution by a Fourier series. The solute
field is given by

XBðz; tÞ ¼
X1

n¼0
an cos

npz
d

expð�n2p2eDt=d2Þ; ðEq 21Þ

where

a0 ¼ ½X Bottom
B z0 þ X Top

B ðd� z0Þ�=d; ðEq 22Þ

and

an ¼
�2 X Top

B � X Bottom
B

h i

np
sin

npz0
d
; ðEq 23Þ

for n = 1, 2 …. After combining terms, we find

djðtÞ ¼ 16
DD
eD

X Top
B � X Bottom

B

h i

p3

�
X1

n odd

1

n3
sin

npz0
d

expð�n2p2eDt=d2Þ � 1
h i

:

ðEq 24Þ

We note that the final curvature is given by

djð1Þ ¼ �2 z0ðz0 � dÞ
d2

DD
eD

X Top
B � X Bottom

B

h i
; ðEq 25Þ

while expanding the general result (24) to first order in t for
small times, we obtain

jðtÞ ¼ 4
DD

d3

� �

X Top
B � X Bottom

B

h i
t; ðEq 26Þ

where we have used the result*

X1

n odd

1

n
sin

npz0
d
¼ p

4
ðEq 27Þ

*The series is evaluated by recognizing it as a Fourier sine series for a
function of z whose Fourier coefficients are 1/n for odd n. This is just the
series for a constant function over the interval, 0< z0 < d, extended as an
odd function about z0 ¼ 0 and z0 ¼ d. Specifically, the sum evaluates to
p=4 for all z0 in this domain.
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2.3 Bi-Phase Beam: General Model

Consider the case where the initial condition for XB is
again given by Eq 2 but for 0 � z � z0 the material is a
phase and for z0 � z � d the material is b phase. The
moving interface between the phases is located at z�ðtÞ with
z�ð0Þ ¼ z0 and with interface compositions,

XBðz; tÞ ¼
X ab
B for z� ¼ z�ðtÞ

X ba
B for zþ ¼ z�ðtÞ

(

: ðEq 28Þ

The usual conservation equation involving the fluxes also
holds at the moving interface.

For this two-phase problem, Eq 10 becomes

_e0xx ¼

DDa

3

@2X a
B

@z2
; 0< z< z�ðtÞ

DDb

3

@2X b
B

@z2
; z�ðtÞ< z< d

8
>><

>>:
; ðEq 29Þ

where DDa and DDb are the differences ðDB � DAÞ in
intrinsic diffusion coefficients for each phase. If we assume
that the elastic moduli and viscosities of the phases are the
same, we can replace Eq 13 and 14 with

d

dt

Zd

0

jðtÞ½z� cðtÞ�dz

¼ �DDa

3~Da

d

dt

Zz�ðtÞ

0

X a
Bðz; tÞdz � X a

B ðz�ðtÞ; tÞ
dz�ðtÞ
dt

2

6
4

3

7
5

� DDb

3~Db

d

dt

Zd

z�ðtÞ

X b
Bðz; tÞdzþ X b

Bðz�ðtÞ; tÞ
dz�ðtÞ
dt

2

6
4

3

7
5

ðEq 30Þ

d

dt

Zd

0

zjðtÞ½z� cðtÞ�dz

¼ �DDa

3~Da

d

dt

Zz�ðtÞ

0

zX a
B ðz; tÞ dz� X a

Bðz�ðtÞ; tÞz�ðtÞ
dz�ðtÞ
dt

2

6
4

3

7
5

� DDb

3~Db

d

dt

Zd

z�ðtÞ

zX b
Bðz; tÞdzþ X b

B ðz�ðtÞ; tÞz�ðtÞ
dz�ðtÞ
dt

2

6
4

3

7
5

ðEq 31Þ

where we have included the effect of the time-dependent
limit of integration.

We note that X a
Bðz�ðtÞ; tÞ ¼ X ab

B and X b
Bðz�ðtÞ; tÞ ¼ X ba

B
are constant. Thus both expressions can be integrated with

respect to time and in addition the left sides can be
integrated with respect to distance yielding

djðtÞ d
2
� cðtÞ

� �

¼ PðtÞ ðEq 32Þ

d2jðtÞ d
3
� cðtÞ

2

� �

¼ QðtÞ ðEq 33Þ

where

PðtÞ

¼ �DDa

3~Da

Zz�ðtÞ

0

X a
Bðz; tÞ � X a

Bðz; 0Þ
� �

dz � X ab
B z�ðtÞ � z0½ �

2

6
4

3

7
5

� DDb

3~Db

Zd

z�ðtÞ

X b
B ðz; tÞ � X b

B ðz; 0Þ
h i

dzþ X ba
B ½z�ðtÞ � z0�

2

6
4

3

7
5

ðEq 34Þ

QðtÞ

¼�DDa

3~Da

Zz�ðtÞ

0

z X a
Bðz; tÞ�X a

B ðz;0Þ
� �

dz �X ab
B

2
z�2ðtÞ� z20
� �

2

6
4

3

7
5

�DDb

3Db

Zd

z�ðtÞ

z X b
Bðz; tÞ�X b

Bðz;0Þ
h i

dzþX ba
B

2
½z�2ðtÞ� z20�

2

6
4

3

7
5

ðEq 35Þ

Solving for jðtÞ and cðtÞ, we obtain

d3jðtÞ
12

¼ QðtÞ � d
2
PðtÞ

cðtÞ � d
2
¼ PðtÞ

6 PðtÞ � 2
dQðtÞ

� �
ðEq 36Þ

Note that the strain neutral axis position cðtÞ is time-
dependent. The equation for the curvature becomes

d3jðtÞ
12
¼�DDa

3~Da

Zz�ðtÞ

0

z�d
2

� �

X a
B ðz; tÞ�X a

Bðz;0Þ
� �

� �

dz

�DDb

3~Db

Zd

z�ðtÞ

z�d
2

� �

X b
B ðz; tÞ�X b

Bðz;0Þ
h i� �

dz

þ1

6

DDa

~Da
X ab
B �

DDb

~Db
X ba
B

� �

½z�ðtÞ� z0�½z�ðtÞþ z0�d�

ðEq 37Þ

We are left to evaluate the integrals from the diffusion
solution. These integrals are evaluated for the final state
when all diffusion has stopped and an equilibrium state has
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been achieved in Section 2.4. The time dependence will be
evaluated in two ways: analytically for early time using the
error function solution for a moving interface in the
Appendix (summarized in Section 2.5) and by numerically
solving the diffusion equation as described in Section 2.6.

2.4 Bi-Phase Beam: Final Curvature

Equation 37 can be evaluated for the final equilibrium
composition profiles and the final interface position, zf
obtained from a simple solute balance. The final curvature
jf is

d3jf

2

¼ zf ðzf � dÞ
�

�DDa

~Da
X ab
B �X Bottom

B

h i
þDDb

~Db
X ba
B �X Top

B

h i�

þ ðzf � z0Þðzf þ zo� dÞ DDa

~Da
X ab
B �

DDb

~Db
X ba
B

� �

ðEq 38Þ

with

zf ¼
d X Top

B � X ba
B

h i
þ z0 X Bottom

B � X Top
B

h i

X ab
B � X ba

B

ðEq 39Þ

2.5 Bi-Phase Beam: Analytical Solution for Early Time

In the appendix, it is shown that for early time, t �
½minðz0; d� z0Þ�2=maxð~Da; ~DbÞ, Eq 37 can be written as

d3jðtÞ
12

¼ A
ffiffi
t
p
þ Bt; ðEq 40Þ

with A and B given by Eq A17 and A18 and repeated here,

A � d
3
ffiffiffi
p
p ð1� 2z0=dÞ

X ab
B � X ba

B


 �
�

X ab
B � X Bottom

B


 �

� DDa

ffiffiffiffiffiffi
~Da
p 2X ab

B � X ba
B


 �
� DDb

r
ffiffiffiffiffiffi
~Db
p X ba

B

� �

� X ba
B � X Top

B


 � DDb

ffiffiffiffiffiffi
~Db
p 2X ba

B � X ab
B


 �
� rDDa

ffiffiffiffiffiffi
~Da
p X ab

B

� ��

ðEq 41Þ

B � 1

3
DDa X ab

B � X Bottom
B


 �
� DDb X ba

B � X Top
B


 �h i
;

ðEq 42Þ

where r2 ¼ ~Db=~Da. This expression holds only for small
values of dimensionless deviations from the equilibrium
interface compositions for each phase; i.e., jSaj � 1 and
jSbj � 1 with

Sa ¼
X ab
B � X Bottom

B


 �

X ab
B � X ba

B


 � ; Sb ¼
X ba
B � X Top

B


 �

X ab
B � X ba

B


 � : ðEq 43Þ

Values for the parameters A and B for larger values of Sa

and Sb are given in Eq A12 and A13. We note the presence

of a term proportional to
ffiffi
t
p

in the result for the two-phase
beam not present in the single-phase beam. The term
vanishes when the initial interface is centered in the beam,
z0 ¼ d=2.

2.6 Bi-Phase Beam: Numerical Solution

To determine the complete time behavior that spans the
early time result and the final equilibrium result, numerical
solution to the diffusion problem is required. We use a
change of variables from ðz; tÞ to ðy; tÞ that fixes the
interface location. We define

y ¼ ½z� z�ðtÞ�=z�ðtÞ 0 � z � z�ðtÞ
½z� z�ðtÞ�=½d� z�ðtÞ� z�ðtÞ � z � d

�

ðEq 44Þ

and set uaðy; tÞ ¼ X a
Bðz; tÞ for �1 � y � 0 and ubðy; tÞ ¼

X b
Bðz; tÞ for 0 � y � 1; the interface is then always located

at y ¼ 0. The solution to the transformed equations for
uaðy; tÞ and ubðy; tÞ is then obtained using a finite difference
scheme to discretize in space, coupled to an ordinary
differential equation solver in time. To avoid resolving
the steep spatial gradients in the concentration profile near
the interface at short times, the initial conditions for the
numerical solution are obtained from the similarity solution
(Section A1) at a time t > 0 that is large enough that the
steep gradients have decayed, but small enough that the end
effects associated with the finite couple are still insignifi-
cant. Results from this numerical solution (composition
profiles and interface position) are then used to evaluate the
curvature expression (Eq 37).

3. Results and Discussion

3.1 Single-Phase Beam

Evaluation of the general result (Eq 24) is made for
materials parameters corresponding to the experiments of
Daruka et al.[2] for diffusion couple beams made initially
of pure Ti and Zr and annealed at 1223 K. Both
components are BCC and are completely soluble in each
other. Taking component A as Ti on the bottom and
component B as Zr on the top, X Top

B � X Bottom
B ¼ 1:0.

Further we take d ¼ 0:2 mm DD ¼ DZr � DTi ¼ 6�
10�14 m2 s�1 and eD ¼ 1:6� 10�13 m2 s�1 (as measured
by Daruka et al.,[2] giving DD=eD ¼ 0:375). Figure 2
shows results for several values of the location of the
initial discontinuity, z0. For z0 ¼ d=2, the predicted curve
is approximately linear for 0< teD=d2 < 0:05, and has
reached its limiting value by teD=d2 ¼ 0:5. The dashed
lines are the linear approximations for early time (Eq 26)
and the constant limiting values for late time (Eq 25) for
each value of z0.

In agreement with Daruka et al.,[2] the slope of the linear
portion does not depend on the interdiffusion coefficient as
seen in Eq 26. It also does not depend on the position of the
initial interface. However, the final curvature given by
Eq 25 does depend on the initial position of the interface
through the factor z0ðd� z0Þ=d2. This factor is at a
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maximum if the initial interface is centered in the beam and
decreases as the initial position is situated on either side of
center. The time t� of the intersection of the linear curve and
the limiting values is given by

~Dt�=d2 ¼ 1

2

z0
d

1� z0
d


 �
: ðEq 45Þ

Thus the valid time range of the linear form is reduced as
the initial interface is placed farther off center as one would
expect.

The physical understanding of the general result is as
follows. Because the top of the diffusion couple is B-rich
and B is the fast diffuser, the curvature goes positive; the
beam becomes more concave with time when viewed from
positive z or the B side (See Fig. 1). Component B has left
the top of the beam faster than it has been replaced by
component A, requiring the top of the beam to decrease in
volume (lose lattice sites). At long times, the diffusion
process slows as the sample becomes uniform in compo-
sition and reaches a final curvature. Measurement of the
final curvature would require experimental times much
greater than t� derived from Eq 45.

It is of interest to compare our result for early time,
Eq 26, to the analytical result of Ref. 2 given in Eq 1.
Evaluating their expression for the concentration-weighted
intrinsic diffusion coefficients given in Ref. 2 for our case of
constant molar volume and constant intrinsic diffusion
coefficients, one obtains

�Di ¼ X Top
B � X Bottom

B


 �
Di; ðEq 46Þ

so that their Eq 1 becomes

jðtÞ ¼ 6
DD X Top

B � X Bottom
B

h i

d3
t; ðEq 47Þ

which differs from our result only by the numerical factor of
six rather than four.

The difference in the models is due to different
assumptions about the beam shape. To correspond to their
experimental conditions, the model of Daruka et al. force a
cylindrical shape by applying a moment along one edge of
a rectangular plate to keep it straight (e.g., to the left in
Fig. 1). In contrast, our results apply to a beam that is not
so clamped but is free to bend in both orthogonal
directions into a spherical shape; i.e., no such moment is
applied. Indeed the experiment of Daruka et al. note
deviations from a cylindrical shape as a reason for the
variation of measured slopes in curvature versus time plots
for diffusion conducted at 1223 K (their Fig. 10). They
note that the largest slope refers to the ideal case that
experimentally was closest to the cylindrical shape and the
lower slopes to when some curvature in the perpendicular
direction was observed at the end away from the clamp.
The ratio of their highest to lowest slopes is approximately
2.8, while the ratio of cylindrical to spherical numerical
factors from the models is 6/4 = 1.5. Thus a significant
portion of their range of slopes can be understood through
an examination of the difference between the cylindrical
and spherical cases. It is not clear however why there is a
transition experimentally from cylindrical curvature near
the clamp to a doubly curved surface away from the
clamp.

3.2 Two-Phase Beam

If the original interface is at the middle of the sample,
z0 ¼ d=2, the analysis of the two-phase beam for early time
retains the general result of the single-phase beam that the
curvature is linear in time and does not depend on the
interdiffusion coefficient(s). Using the value for B given by
Eq 42 and A ¼ 0 in Eq 40 yields

jðtÞ ¼ 12Bt

d3

¼ 4

d3
DDa X ab

B � X Bottom
B


 �
� DDb X ba

B � X Top
B


 �h i
t:

ðEq 48Þ

In the limit of the single-phase beam and with DDa ¼
DDb ¼ DD the slope is proportional to DDðX Top

B � X Bottom
B Þ,

the result obtained for the single-phase beam. Equation 45
may provide experimentalists a new method to gain intrinsic
diffusion data ðDDa and DDbÞ by measuring beam curva-
tures with two-phase beams. As an aside, it is remarkable to
note that except for the numerical factor, Eq 48 could have
been obtained by evaluation of the integrals for the concen-
tration-weighted diffusion coefficients (Eq 1) of Daruka
et al.[2] even though it was derived for a single-phase beam.

Fig. 2 Single-phase beam results: dimensionless curvature dj
vs. dimensionless time tD/d2 for the indicated values of zo/d. The
dashed lines are the initial approximation which is independent
of zo/d and the long-time limits and DD/d = 0.375 and
X Top
B � X Bottom

B ¼ 1:0
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If the original interface is not the middle of the sample,
z0 6¼ d=2, a

ffiffi
t
p

term that depends on the initial interface
position z0 is obtained. The coefficient of the

ffiffi
t
p

term is
given by the parameter A given by Eq 41. Figure 3 shows
results for two-phase beam for the parameters given in
Table 1. The dashed curves highlight the interplay of the

ffiffi
t
p

and linear terms using Eq 40-42. If the initial interface is
situated at the center of the beam, z0 ¼ d=2, the initial
behavior is linear in time. Because both DDa and DDb were
taken positive, the curvature is positive and increases
linearly with time. If the initial interface is toward the
bottom of the beam, z0=d small, the curvature increases
faster than linearly with time. If the initial interface is
toward the top of the beam, z0=d nearer unity, the curvature
goes negative and then slightly flattens. We have also
included the values of the final curvature from Eq 38 and 39
in Fig. 3 as horizontal dashed lines. The results of the full

numerical analysis (solid curves) predict a gradual transition
from the approximate solution at early time to the final
curvatures indicated. The special case of z0 ¼ 0:649 d
chosen to give zero final curvature, has a significant
nonmonotonic behavior with curvature going negative at
early time followed by a gradual return to zero curvature.

The physical understanding of the cases evaluated is as
follows. Component B leaves the top of the beam and the
interface moves toward the top as the b phase dissolves.
There is no diffusion in the b phase because we have taken
X Top
B ¼ X ba

B . The a phase becomes richer in component B
on average with no decrease in component A, thus lattice
sites must be created by vacancy emission from defects
within the a phase that can be filled with the extra B atoms.
This causes an expansion of the beam below the ab
interface. If the initial interface is near the bottom of the
beam, the bottom part of the beam expands (adds lattice
sites) making the curvature go positive more quickly than if
the interface had been at the middle. If the initial interface is
near the top of the beam, the top part of the beam expands
making the curvature go negative at early time. At later time
as the diffusion spreads farther into the lower half of the
beam, expansion occurs there that reverses the direction of
bending.

4. Conclusions

The bending of binary alloy single-phase and two-phase
beams due to diffusion across the beam has been computed
for dissimilar lattice diffusion rates of the two components.
The initial beams contain a step function composition
profile and results are given for the full time range until the
beam is uniform in composition or an equilibrium two-
phase mixture is obtained. Analytical expressions are
available for the final curvature in both cases. At early
time, the curvature of a single-phase beam is linear in time,
as also found by other researchers. However, the coefficient
of proportionality varies depending on whether the beam is
allowed to bend in two planes or only in one. The curvature
of the two-phase beam for early time is linear in time only if
the initial composition discontinuity is centered in the beam;
otherwise the curvature goes as the square root of time at
early time. Nonmonotonic behavior for the curvature-time
relation can also occur for two-phase beams.

5. Appendix: Analytical Evaluation of the Beam
Curvature for Early Time Using the Error
Function Solution

5.1 The Similarity Error Function Diffusion Solution
for a Moving Interface

To determine the behavior of the bi-phase beam for early
time t � ½minðz0; d� z0Þ�2=maxð~Da; ~DbÞ, we use the error
function solution for a two-phase diffusion couple obtained

Fig. 3 Two-phase beam results: djðtÞ vs. ~Dbt=d
2 for four posi-

tions, z0=d, of the initial a=b interface. Three lines are shown for
each value z0=d: The final curvature (dashed, horizontal lines);
the curvature from the early time expression (dashed curves);
and the fully numerical solution (solid lines)

Table 1 Parameters for Fig. 3 (All units SI)

~Da 1.6 9 10�13

~Db 1.6 9 10�13

DDa 6.0 9 10�14

DDb 6.0 9 10�14

X Bottom
B 0.00

X Top
B 1.0

X ab
B 0.5

X ba
B 1.0

z0=d 0.3, 0.5, 0.649, 0.7

K 0.0287
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from Sekerka and Wang,[7] for example, with far field
compositions given by X a1

B ¼ X Bottom
B and X b1

B ¼ X Top
B .

For interdiffusion coefficients ~Da and ~Db for the two phases
(assumed constant) and using r2 ¼ ~Db=~Da, the composition
profiles are

X a
Bðz; tÞ ¼ X a1

B þ X ab
B �X a1

B


 �1þ erf z� z0ð Þ
. ffiffiffiffiffiffiffiffiffiffi

4~Dat
p
 �

1þ erf ðrKÞ ;

X b
Bðz; tÞ ¼ X b1

B þ X ba
B �X b1

B


 �1� erf z� z0ð Þ
. ffiffiffiffiffiffiffiffiffiffi

4~Dbt
p
 �

1� erfðKÞ ;

ðEq A1Þ

with

z�ðtÞ � z0 ¼ K
ffiffiffiffiffiffiffiffiffiffi
4~Dbt

p
: ðEq A2Þ

Here K is the root of

K þ 1
ffiffiffi
p
p 1

r
Sa expð�r2K2Þ

1þ erf ðrKÞ

� �

þ 1
ffiffiffi
p
p Sb expð�K2Þ

1� erf ðKÞ

� �

¼ 0;

ðEq A3Þ

with dimensionless deviations from the equilibrium com-
positions for each phase given by

Sa ¼
X ab
B � X a1

B


 �

X ab
B � X ba

B


 � ; Sb ¼
X ba
B � X b1

B


 �

X ab
B � X ba

B


 � : ðEq A4Þ

It can be shown that if ~Da ¼ ~Db and X ab
B ¼ X ba

B ¼
ðX a1

B þ X b1
B Þ=2, then K ¼ 0 and we recover the solu-

tion for the single-phase diffusion problem. Further simpli-
fication is possible for small deviations of the initial
conditions from the equilibrium interface compositions;
i.e., ðSa þ SbÞ � p

2 and for r not too large,

K � � 1
ffiffiffi
p
p Sa1

r
þ Sb

� �

; ðEq A5Þ

i.e.,

K � �
X ab
B � X a1

B


 �
1
r þ X ba

B � X b1
B


 �

ffiffiffi
p
p

X ab
B � X ba

B


 � : ðEq A6Þ

5.2 Curvature

Returning to the beam deflection problem and by noting
that X a

Bðz; 0Þ ¼ X a1
B and X b

Bðz; 0Þ ¼ X b1
B , the integrals in

Eq 37 can be written

Zz�ðtÞ

0

z� d
2

� �

X a
Bðz; tÞ � X a

Bðz; 0Þ
� �

� �

dz

¼ Ba

Zz� tð Þ

0

z� d
2

� �

1þ erf z� z0ð Þ
. ffiffiffiffiffiffiffiffiffiffi

4~Dat
p
 �h i

dz;

Zd

z�ðtÞ

z� d
2

� �

X b
B ðz; tÞ � X b

B ðz; 0Þ
h i� �

dz

¼ Bb

Zd

z�ðtÞ

z� d
2

� �

1� erf z� z0ð Þ
. ffiffiffiffiffiffiffiffiffiffi

4~Dbt
p
 �h i� �

dz;

ðEq A7Þ

where

Ba ¼
X ab
B � X a1

B


 �

1þ erf ðrKÞ ;

Bb ¼
X ba
B � X b1

B


 �

1� erf ðKÞ :

ðEq A8Þ

By performing the integrals above, one obtains

d3jðtÞ
12

¼ f ðtÞ; ðEq A9Þ

where f ðtÞ has the form

f ðtÞ ¼ aþ b
ffiffi
t
p
þ ct þ d expð�1=tÞ

ffiffi
t
p
þ k erf ð1=

ffiffi
t
p
Þ

þ m t erf ð1=
ffiffi
t
p
Þ ðEq A10Þ

which can expanded for lowest powers of t as

d3jðtÞ
12

¼ A
ffiffi
t
p
þ Bt; ðEq A11Þ

where the constant term drops out. One obtains for the
constants A and B

A ¼ d
3

1� 2z0
d

� ��
DDa

ffiffiffiffiffiffi
~Da
p X ab

B � X Bottom
B


 �

� exp �r2K2ð Þ
ffiffiffi
p
p
ð1þ erfðrKÞÞ þ rK

� �

þ DDb

ffiffiffiffiffiffi
~Db
p X ba

B � X Top
B


 � exp �K2ð Þ
ffiffiffi
p
p

1� erfðKÞð Þ � K

� �

þ DDb

ffiffiffiffiffiffi
~Db
p X ba

B �
rDDa

ffiffiffiffiffiffi
~Da
p X ab

B

� �

K

�

ðEq A12Þ

and

B ¼ DDa

3
X ab
B � X Bottom

B


 �

� ð1� 2r2K2Þ � 2
ffiffiffi
p
p rK expð�r2K2Þ

1þ erf ðrKÞ

� �

� DDb

3
X ba
B � X Top

B


 �
ð1� 2K2Þ þ 2

ffiffiffi
p
p K expð�K2Þ

1� erf ðKÞ

� �

þ 2

3
rDDaX ab

B � DDbX ba
B

h i
K2 ðEq A13Þ

where we have reintroduced X Bottom
B ¼ X a1

B and X Top
B ¼

X b1
B . Note that only the

ffiffi
t
p

term depends on the initial
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interface position z0 in this expansion. If the original
interface is at the middle of the sample, z0 ¼ d=2, A ¼ 0 and
the curvature is linear in time as in the single-phase
problem. Also, in the limit of the single-phase problem,
X ab
B ¼ X ba

B ¼ ðX Bottom
B þ X Top

B Þ=2 and ~Da ¼ ~Db, K ¼ 0 and
one obtains A ¼ 0 no matter the value of z0 in agreement
with the result for the single-phase beam. Setting
DDa ¼ DDb ¼ DD in this last case gives

B ¼ 1

3
DD X Top

B � X Bottom
B


 �
: ðEq A14Þ

and we recover the early time result obtained in
Section 2.2.

5.3 Curvature for Small Sa and Sb

The results, Eq A12 and A13, can be approximated
to first order in K yielding simpler expressions for A
and B,

A � d
3

1� 2z0
d

� �
DDa

ffiffiffiffiffiffi
~Da
p
�

X ab
B � X Top

B


 � 1
ffiffiffi
p
p � 2

p
� 1

� �

rK

� �

þ DDb

ffiffiffiffiffiffi
~Db
p X ba

B � X Bottom
B


 � 1
ffiffiffi
p
p þ 2

p
� 1

� �

K

� �

þ DDb

ffiffiffiffiffiffi
~Db
p X ba

B �
rDDa

ffiffiffiffiffiffi
~Da
p X ab

B þ
� �

K

�

ðEq A15Þ

B� 1

3
DDa X ab

B �X Bottom
B


 �
�DDb X ba

B �X Top
B


 �h i

�K
2

3
ffiffiffi
p
p rDDa X ab

B �X Bottom
B


 �
þDDb X ba

B �X Top
B


 �h i

ðEq A16Þ

For small values of Sa and Sb; i.e., small deviations of
the far field compositions from the equilibrium interface

conditions, one can use Eq A6 to obtain to first order in
ðX ab

B � X Bottom
B Þ and ðX ba

B � X Top
B Þ,

A � d
3
ffiffiffi
p
p 1� 2z0=dð Þ

X ab
B � X ba

B


 �
�

X ab
B � X Bottom

B


 �

� DDa

ffiffiffiffiffiffi
~Da
p 2X ab

B � X ba
B


 �
� DDb

r
ffiffiffiffiffiffi
~Db
p X ba

B

� �

� X ba
B � X Top

B


 � DDb

ffiffiffiffiffiffi
~Db
p 2X ba

B � X ab
B


 �
� rDDa

ffiffiffiffiffiffi
~Da
p X ab

B

� ��

ðEq A17Þ

B � 1

3
DDa X ab

B � X Bottom
B


 �
� DDb X ba

B � X Top
B


 �h i

ðEq A18Þ
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